Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Comput Math Methods Med ; 2022: 9604456, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1704361

RESUMEN

OBJECTIVE: To investigate the potential pharmacological value of extracts from honeysuckle on patients with mild coronavirus disease 2019 (COVID-19) infection. METHODS: The active components and targets of honeysuckle were screened by Traditional Chinese Medicine Database and Analysis Platform (TCMSP). SwissADME and pkCSM databases predict pharmacokinetics of ingredients. The Gene Expression Omnibus (GEO) database collected transcriptome data for mild COVID-19. Data quality control, differentially expressed gene (DEG) identification, enrichment analysis, and correlation analysis were implemented by R toolkit. CIBERSORT evaluated the infiltration of 22 immune cells. RESULTS: The seven active ingredients of honeysuckle had good oral absorption and medicinal properties. Both the active ingredient targets of honeysuckle and differentially expressed genes of mild COVID-19 were significantly enriched in immune signaling pathways. There were five overlapping immunosignature genes, among which RELA and MAP3K7 expressions were statistically significant (P < 0.05). Finally, immune cell infiltration and correlation analysis showed that RELA, MAP3K7, and natural killer (NK) cell are with highly positive correlation and highly negatively correlated with hematopoietic stem cells. CONCLUSION: Our analysis suggested that honeysuckle extract had a safe and effective protective effect against mild COVID-19 by regulating a complex molecular network. The main mechanism was related to the proportion of infiltration between NK cells and hematopoietic stem cells.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Medicamentos Herbarios Chinos/uso terapéutico , Lonicera , Farmacología en Red , Fitoterapia , SARS-CoV-2 , Antivirales/química , Antivirales/farmacocinética , Antivirales/uso terapéutico , COVID-19/genética , COVID-19/inmunología , Biología Computacional , Bases de Datos Farmacéuticas/estadística & datos numéricos , Evaluación Preclínica de Medicamentos , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacocinética , Expresión Génica/efectos de los fármacos , Ontología de Genes , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/inmunología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/inmunología , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Lonicera/química , Medicina Tradicional China , Pandemias , SARS-CoV-2/efectos de los fármacos
2.
Viruses ; 13(2)2021 02 16.
Artículo en Inglés | MEDLINE | ID: covidwho-1085036

RESUMEN

Honeysuckle (Lonicera japonica Thunb) is a traditional Chinese medicine (TCM) with an antipathogenic activity. MicroRNAs (miRNAs) are small non-coding RNA molecules that are ubiquitously expressed in cells. Endogenous miRNA may function as an innate response to block pathogen invasion. The miRNA expression profiles of both mice and humans after the ingestion of honeysuckle were obtained. Fifteen overexpressed miRNAs overlapped and were predicted to be capable of targeting three viruses: dengue virus (DENV), enterovirus 71 (EV71) and SARS-CoV-2. Among them, let-7a was examined to be capable of targeting the EV71 RNA genome by reporter assay and Western blotting. Moreover, honeysuckle-induced let-7a suppression of EV71 RNA and protein expression as well as viral replication were investigated both in vitro and in vivo. We demonstrated that let-7a targeted EV71 at the predicted sequences using luciferase reporter plasmids as well as two infectious replicons (pMP4-y-5 and pTOPO-4643). The suppression of EV71 replication and viral load was demonstrated in two cell lines by luciferase activity, RT-PCR, real-time PCR, Western blotting and plaque assay. Furthermore, EV71-infected suckling mice fed honeysuckle extract or inoculated with let-7a showed decreased clinical scores and a prolonged survival time accompanied with decreased viral RNA, protein expression and virus titer. The ingestion of honeysuckle attenuates EV71 replication and related pathogenesis partially through the upregulation of let-7a expression both in vitro and in vivo. Our previous report and the current findings imply that both honeysuckle and upregulated let-7a can execute a suppressive function against the replication of DENV and EV71. Taken together, this evidence indicates that honeysuckle can induce the expression of let-7a and that this miRNA as well as 11 other miRNAs have great potential to prevent and suppress EV71 replication.


Asunto(s)
Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Lonicera/química , MicroARNs/metabolismo , Extractos Vegetales/farmacología , Replicación Viral/efectos de los fármacos , Animales , Línea Celular , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/tratamiento farmacológico , Humanos , Ratones , Ratones Endogámicos ICR
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA